Structural Investigation for Optimization of Anthranilic Acid Derivatives as Partial FXR Agonists by in Silico Approaches

نویسندگان

  • Meimei Chen
  • Xuemei Yang
  • Xinmei Lai
  • Jie Kang
  • Huijuan Gan
  • Yuxing Gao
چکیده

In this paper, a three level in silico approach was applied to investigate some important structural and physicochemical aspects of a series of anthranilic acid derivatives (AAD) newly identified as potent partial farnesoid X receptor (FXR) agonists. Initially, both two and three-dimensional quantitative structure activity relationship (2D- and 3D-QSAR) studies were performed based on such AAD by a stepwise technology combined with multiple linear regression and comparative molecular field analysis. The obtained 2D-QSAR model gave a high predictive ability (R²(train) = 0.935, R²(test) = 0.902, Q²(LOO) = 0.899). It also uncovered that number of rotatable single bonds (b_rotN), relative negative partial charges (RPC(-)), oprea's lead-like (opr_leadlike), subdivided van der Waal's surface area (SlogP_VSA2) and accessible surface area (ASA) were important features in defining activity. Additionally, the derived3D-QSAR model presented a higher predictive ability (R²(train) = 0.944, R²(test) = 0.892, Q²(LOO) = 0.802). Meanwhile, the derived contour maps from the 3D-QSAR model revealed the significant structural features (steric and electronic effects) required for improving FXR agonist activity. Finally, nine newly designed AAD with higher predicted EC50 values than the known template compound were docked into the FXR active site. The excellent molecular binding patterns of these molecules also suggested that they can be robust and potent partial FXR agonists in agreement with the QSAR results. Overall, these derived models may help to identify and design novel AAD with better FXR agonist activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure-based drug design targeting the cell membrane receptor GPBAR1: exploiting the bile acid scaffold towards selective agonism

Bile acids can regulate nutrient metabolism through the activation of the cell membrane receptor GPBAR1 and the nuclear receptor FXR. Developing an exogenous control over these receptors represents an attractive strategy for the treatment of enterohepatic and metabolic disorders. A number of dual GPBAR1/FXR agonists are known, however their therapeutic use is limited by multiple unwanted effect...

متن کامل

In vitro and in silico studies of the inhibitory effects of some novel kojic acid derivatives on tyrosinase enzyme

Objective(s): Tyrosinase is a key enzyme in pigment synthesis. Overproduction of melanin in parts of the skin results in hyperpigmentation diseases. This enzyme is also responsible for the enzymatic browning in fruits and vegetables. Thus, its inhibitors are of great importance in the medical, cosmetic and agricultural fields. Materials and Methods: A series of twelve kojic acid derivatives wer...

متن کامل

Thiamine hydrochloride (vitamin B1) as an efficient catalyst for the synthesis of 4-(3H)-Quinazolinone derivatives using grinding method.

Herein we explore facile synthesis of 4-(3H)-Qunazolinone derivatives, achieved by the cyclocondensation of anthranilic acid, aromatic amines and triethyl orthoformate in presence of thiamine hydrochloride (Vitamin B1) as a catalyst, using grinding method. This protocol offers several advantages such as reusability of catalyst, excellent yield, shorter reaction time and economic availability.Qu...

متن کامل

Thiamine hydrochloride (vitamin B1) as an efficient catalyst for the synthesis of 4-(3H)-Quinazolinone derivatives using grinding method.

Herein we explore facile synthesis of 4-(3H)-Qunazolinone derivatives, achieved by the cyclocondensation of anthranilic acid, aromatic amines and triethyl orthoformate in presence of thiamine hydrochloride (Vitamin B1) as a catalyst, using grinding method. This protocol offers several advantages such as reusability of catalyst, excellent yield, shorter reaction time and economic availability.Qu...

متن کامل

In-silico Investigation of Tubulin Binding Modes of a Series of Novel Antiproliferative Spiroisoxazoline Compounds Using Docking Studies

Interference with microtubule polymerization results in cell cycle arrest leading to cell death. Colchicine is a well-known microtubule polymerization inhibitor which does so by binding to a specific site on tubulin. A set of 3',4'-bis (substituted phenyl)-4'H-spiro[indene-2,5'-isoxazol]-1(3H)-one derivatives with known antiproliferative activities were evaluated for their tubulin binding modes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2016